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Abstract 

The phase, node position, intensity and integrated 
intensity of the standing-wave field have been calcu- 
lated for a deformed layer on a perfect bulk as a 
function of angle of incidence and depth inside the 
crystal. The influence of the various parameters of 
the deformation, in particular the interface steepness, 
has been studied. It is found that nodes are never 
hooked to the deformed planes and that it is only for 
an incidence corresponding to the middle of the 
substrate peak that they are hooked to the bulk un- 
deformed planes. The calculation has been applied 
to two particular situations corresponding to a rela- 
tively thick overlayer with an interface of about 100 
unit cells, and to very thin overlayers with an interface 
two unit cells thick. In the latter case it is found that 
for a surface relaxation of 2% with respect to the 
bulk the minimum number of lattice planes above 
the interface for which it can no longer be assumed 
that the nodes remain hooked to the bulk is of the 
order of ten. 

1. Introduction 

Since the pioneering papers by Batterman (1964, 
1969) suggesting that standing waves could be used 
for atom location at crystal surfaces, more than 90 
papers, theoretical and experimental, have been pub- 
lished on this topic. Many of the applications of the 
method have been devoted to the determination of 
the location of adsorbed surface atoms and of surface 
reconstruction. But more than a quarter have dealt 
with the study of deformed or implanted surface 
layers or of interfaces between substrate and epilayer, 
for instance interfaces between a silicon substrate 
and an overlayer of metal silicide. The cases involving 
a deformed surface layer are important for modern 
technology and the standing-wave technique is a very 
promising tool for their study. In none of them can 
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perfect-crystal theory be expected to be rigorously 
valid. Most authors nevertheless usually assume that, 
if the epilayer or the surface deformed layer is very 
thin, the nodes and antinodes remain hooked to the 
perfect bulk substrate; while only a few authors have 
taken into account the deformation of the surface 
layer (Kohn & Kovalchuk, 1981; Kovalchuk, 
Vartanyantz & Kohn, 1987; Authier, Gronkowski & 
Malgrange, 1987). 

The purpose of this paper is firstly to report the 
behaviour of nodes and antinodes of standing waves 
computed by solving Takagi-Taupin equations in a 
single heterostructure where an epilayer is deposited 
on a substrate with a continously varying parametcr 
across the interface and to discuss the influence of 
the steepness of the interface. For practical purposes, 
the case of an epilayer on a GaAs surface and a 004 
reflection has been considered, following the situation 
studied by X-ray diffractometry by Bensoussan, Mal- 
grange & Sauvage-Simkin (1987). 

Secondly, the influence of surface deformation and 
surface relaxation has been studied. The maximum 
number of deformed atomic planes for which it can 
be assumed that the nodes of standing waves remain 
hooked to the perfect lattice below the deformed layer 
has been determined. 

2. Theoretical considerations 

In a perfect crystal, the standing-wave field is given by 

I DI 2 = I Do}2[ 1 + I~:l 2 + 21 ~:J cos (2 ~rh. r + &) ] (2.1) 

where ~: = I~1 exp i4J = Dh/Do is the ratio of the reflec- 
ted to the incident amplitude, h is the reciprocal- 
lattice vector, oriented towards the inside of the crys- 
tal and r is a position vector. It is well known that 
h.  r = constant is the equation of a family of planes 
parallel to the reflecting planes whose spacing d is 
the lattice spacing divided by the order of the reflec- 
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tion. The product h .  r can also be written 

h . r=  N + Ad/  d (2.2) 

where N is an integer and zad/d is a relative position 
in the unit cell along the normal to the reflecting 
planes, oriented towards the inside of the crystal (Fig. 
1). Expression (2.1) for the standing-wave field can 
therefore be written as a function of position within 
the unit cell, 

IolE=lDol=[l+l~l=+2l~:l cos (27rAd/d+~)] .  (2.3) 

As the crystal is rocked through the reflection domain 
from the small- to the large-angle side, the phase 
varies from ~h + ~ to ~h, where ~0h is the phase angle 
of the structure factor, Fh, even in the case of absorb- 
ing crystals (Authier, 1986). The nodes of standing 
waves therefore lie on the planes where the hkl 
Fourier component of the electronic density is 
maximum on the small-angle side of the reflection 
domain and progressively drift to a position half way 
between these planes on the large-angle side. 

In a deformed crystal, any point is displaced from 
the position defined by r to a position r' such that 

r ' = r + u ( r )  (2.4) 

where u(r) is the displacement vector. Equation (2.4) 
can be rewritten to a close approximation as 

r = r ' - u ( r ' ) .  (2.5) 

Expression (2.1) now becomes, by substitution of 
(2.5), 

IOl 2:IDol2{1 +1£12 + 21£1 cos (27rh. [r ' -  u(r')] + ~b)} 
(2.6) 

where D, Do, ~ and q, are now position dependent. 
The equation of the deformed planes is 

h.  r ' - h . u ( r ' )  = N, (2.7) 

the origin being taken on a lattice plane. It can also 
be written 

h ' .  r ' =  N ( 2 . 8 )  

/ 
/ 

/ 
7- / /  

Ad, . . . .  Z.r-- Id  

where h' = h+  8h = h - V ( h .  u) is the local reciprocal- 
lattice vector (Authier, 1966). 

Any point in the crystal defined by a position vector 
r' is now characterized by its relative position A d ' / d '  
relative to the deformed planes: 

h' . r '= h . r ' - h  . u(r') = N + Ad ' /  d'  (2.9) 

and (2.3) for the standing-wave field still holds but 
it is calculated at a position relative to the deformed 
cell and D, Do, £ and ff are position dependent. We 
shall limit ourselves in this paper to the case where 
u(r) depends only on the depth z below the crystal 
surface. If we introduce the dimensionless deviation 
parameter 7 of the incident wave, usual in dynamical 
theory and related to the departure from Bragg's angle 
of this incident wave (e.g. Authier, 1986), (2.3) 
becomes 

ID(n, z)l 2 = IDo(n, z)12{ 1 + 1~:(7, z)l 2 

+ 21£(7, z)l cos [2 7 r ( a d ' / d ' ) +  ~(7, z)]}. 
(2.10) 

Here, 7 stands for the real part of the deviation 
parameter, which is the only one which will be con- 
sidered. The origin is taken at the middle of the Bragg 
peak for the substrate (7s = 0). 

It is also possible to relate the same position to the 
planes before deformation. Let us call this relative 
position Ads/ds.  If z ld ' /d '  corresponds to a particular 
atomic site in the unit cell, it is constant in the whole 
heterostructure and AdJds  is depth dependent. The 
two relative positions are related by 

A d ' / d ' =  A d s / d s ( z ) - h . u ( z ) .  (2.11) 

If we consider an epilayer or a deformed layer on 
a perfect bulk, the assumption usually made that the 
nodes remain hooked to the substrate, that is that 
their spacing remains constant throughout the whole 
depth, implies that the value of the standing-wave 
field would be given by 

ID(7, z)12=lDos(7)12{1 + I~:s(7)l 2 

+ 21~:s(7)1 cos [2~radJ as(z)+ ~s(n)]} 
(2.12) 

where Dos(r/), ~s(7) and ffs(7) are the solutions of 
dynamical theory for the perfect substrate and Ads/ds 
represents the relative position with respect to the 
substrate planes in the bulk. 

The important question for the interpretation of 
standing-wave experimental results is the behaviour 
of the nodes. Comparison of (2.10) and (2.12) shows 
that they only remain hooked to the undeformed 
substrate planes if 

(2.13) 
that is, using (2.11), if 

Fig. 1. Geometry of crystal lattice planes. ~(7, z) -- Os(7) = 27rh. u(z). (2.14) 
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On the other hand, if q,(rt, z) is not depth depen- 
dent, the node spacing is continuously equal to that 
of the local reflecting planes and the nodes are there- 
fore hooked to the deformed planes. 

Generally speaking, it is the depth variations of the 
phase O(r/, z) which command the variations of the 
node spacing and the drift of the node positions 
relative to the substrate or to the deformed planes. 

The phase and amplitude of the incident and reflec- 
ted waves were calculated by solving Takagi-Taupin 
equations (Takagi, 1962, 1969; Taupin, 1964) using 
the varying-step algorithm described by Bensoussan 
et al. (1987), working up towards the surface from a 
depth at which the crystal can be assumed to be 
perfect. The variations of the standing-wave field with 
angle of incidence of the incident wave have been 
calculated for any depth inside the crystal and for 
any atomic position within the unit cell. The relative 
position of the standing-wave field will always be 
given, unless otherwise stated, with respect to the 
deformed planes, since this is what is physically 
significant. 

It is a property of Takagi-Taupin equations in the 
Bragg case that since the solution is calculated by 
integrating from the bottom up towards the crystal 
surface, the solution at a certain depth is independent 
of the strain distribution above it (Taupin, 1964). 

In standing-wave experiments, there are two 
quantities of importance, namely the field at the 
surface or along a given plane inside the crystal if it 
is an impurity which is being investigated and the 
integrated field over a certain crystal thickness if it is 
the signal, fluorescent yield or photoemission, from 
the crystal itself. The integrated field has therefore 
also been calculated. This is performed working down 
from the surface. The integration depth, which can 
be controlled experimentally, has been chosen here 
arbitrarily to be equal to half an extinction distance. 

3. Elastic model of  the strain distribution 

The reflecting planes are taken to be parallel to the 
surface and the displacement vector is normal to that 
surface. The depth dependence of the strain has been 
taken to be 

d u ( z ) / d z = - ( A a / a ) { l + e x p [ ( z - z , ) / C ] }  -l (3.1) 

following Bensoussan et al. (1987). The z origin is 
taken at the surface and z increases towards the inside 
of the crystal; if the epilayer lattice parameter is larger 
than the substrate one, du /dz  is taken negative by 
convention. 

Expression (3.1) describes a heterostructure with 
an epilayer of parameter a + A a  on a substrate of 
lattice parameter a. The interface is characterized by 
its midposition, z~, and its steepness by C (Fig. 2). 
The relative lattice-parameter variation Aa/a, which 
is also equal to the relative variation in reflecting- 

plane spacing, Ad/d, is related to the difference A0 
in Bragg angle between epilayer and substrate by 
differentiation of Bragg's law: 

Aa/a = A d / d = - A O / t a n  O. (3.2) 

Introducing the variation At/ of the deviation par- 
ameter which is proportional to a0, since we have 
assumed the reflection to be symmetrical, we can also 
write (3.2) as 

hAd/ d=-A~7/  A (3.3) 

where A is the extinction distance. In the integration 
of the Takagi-Taupin equations, it is h du /dz  which 
intervenes. From (3.1) and (3.3), it is equal to 

h d u / d z = ( A r l / A ) { l + e x p [ ( Z - 1 ) / c ] }  -1 (3.4) 

where Z = z/z~ and c = C/z~ are reduced parameters 
and the reciprocal-lattice vector h is oriented towards 
the inside of the crystal. 

The absolute total displacement u(z) with respect 
to the perfect lattice is obtained by integrating (3.1) 
between the depth where the crystal substrate can be 
assumed to be perfect and depth z and 

hu(z) = cZtAr/((1 - Z) /2c  

+log{2cosh[(1-Z)/2c]}) (3.5) 

where Z~ = z~/A. Use of the reduced parameters Z, 
Z~, c and Art enables one to get general results appli- 
cable to any particular crystal. 

In order to simulate a deformed surface layer, one 
can simply use the same model by putting the surface 
of the crystal at a position close to z = z~. 

On the other hand, if one considers an epilayer 
where the lattice parameter has practically reached 

0.1 

• - ~  . . . . . . . . . . . . . . . . .  i--~ 
i " ~ 4 . 4 C  

~ ............... ~_..L. 

0.9 .0 
du /dz  

e p i l a y e r  

in ter face 

s u b s t r a t e  

Fig. 2. Elastic model of the strain distribution in the heterostruc- 
ture. The value of the strain varies from 0.1 to 0.9 Aa/a in a 
depth range q:2.2 C around the middle of the interface at 
depth zt. 
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the value a+Aa, the depth z at which u(z) is calcu- 
lated is well above the middle of the interface, 
zz(z<zz), and (3.5) reduces to 

hu(z) = Zz(1-  Z)A~7. (3.6) 

The total displacement u(z) at depth z is equal to 
the parameter mismatch, zaa, times the number of 
lattice planes above the middle of the interface, 
(z,-z)/a. 

It will be noted that (3.6) does not depend on C. 
In other words, when the epilayer is much thicker 
than the interface width, the integrated displacement 
does not depend on the interface steepness. In par- 
ticular, at the surface (Z = 0) 

hu(O)=ZzA~7=(Zl/d)(Aa/a). (3.7) 

4. Standing-wave field and phase in the case 
of an epilayer 

4.1. Experimental conditions 

Diffraction conditions: 004 reflection, Cu Kc~. Sub- 
strate: (001) GaAs; Bragg angle 33.03°; extinction 
distance A =5.01 ixm; absorption depth 15.9 ixm; 
half-height width 7.3". Epilayer thickness: zz = 
1.31 Ixm (Zz =0"26); relative lattice-parameter 
change: Aa/a = +7.8 x 10 -4  ( A 0  = 101", At /= -27.7) .  
Interface thickness: C = 0.05 I~m (c = 0.038). 

The surface of the heterostructure has been con- 
sidered to be at z = 0. 'I 'he value (3.7) of hu(O) at the 
surface is equal to -7 .2 .  

4.2. Results 

4.2.1. Rocking curve. Fig. 3 shows the variations 
with angle of incidence of the reflected intensity at 
the surface. The rocking curve presents the epilayer 
and substrate peaks, with fringes in between, as is 
well known. The angle between the epilayer and 
substrate peaks is proportional to the parameter mis- 
match (3.2) and the period of the fringes is inversely 
proportional to the thickness of the epilayer. It is 
equal to that of the fringes which would be observed 
for a thin perfect crystal of the same thickness as that 
of the epilayer. 

Fig. 4 represents in a pseudo-three-dimensional 
way how the rocking curve varies with depth: rocking 
curves at increasing depths are plotted on the same 
diagram. As mentioned above, each of the rocking 
curves is identical to what it would be if the surface 
of the crystal was at the corresponding depth. It can 
be noted that the distance of the epilayer to substrate 
peaks decreases to zero at the interface. 

4.2.2. Standing-wave field. Fig. 5 shows the vari- 
ations with angle of incidence of the standing-wave 
field at the surface for two positions in the unit cell, 
as well as the rocking curve. The two positions are 

situated along the reflecting planes and half way 
between them. It can be seen that there are oscillations 
around the positions of the epilayer and substrate 
peaks and in between, as in the case of the rocking 
curve, and with the same periodicity. The fringes for 
the two positions in the unit cell are out of phase by 
hal fa  fringe, as is to be expected, and, more generally, 
the shape of the signal is quite different and easily 
distinguishable for the two positions. In a real experi- 
ment, the signal would be convoluted with the experi- 
mental width of the beam coming from the mono- 
chromator, which would result in a damping of the 

I N T E N S I T Y  

1 . 0  

0 .0  

Substrate peak 

Epilayer )eak I 

~9 e "9 s 

Fig. 3. Rocking curve of  the heterostructure: ID,12/IDol 2. The 
middle of  the Bragg peaks for the epilayer and the substrate 
corresponds to values 77 e and r/s of  the deviation parameter, 
respectively. 

~ Z 

i I 

I I 

I It 

ulk 

~ .  S u r f a c e  

Fig. 4. Pseudo-three-dimensional representation of  the reflected 
intensity at various depths between the crystal surface and the 
bulk. 
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fringes. The shape of the signal around the epilayer 
peak is very similar to that observed for a thin crystal 
of the same thickness as the epilayer (Authier, 1987), 
but with a slightly different fringe spacing. However, 
the period of the fringes between the peaks is exactly 
identical to that in the corresponding perfect thin 
crystal. 

The standing-wave field integrated over a thickness 
equal to half an extinction distance, that is, in the 
present case, to nearly twice that of the epilayer, is 
represented in Fig. 6. The field is represented for the 
same two positions in the unit cell as in Fig. 5 and 

FIELD INTENSITY 

4.0 

2.0 

0.0 

:ii ' , i  

i! 

" \ / ,  .... " , ' J  i I; 

\/ iti, • 1.0 

~ ' ~  . . . . . .  0.0 

-40.0 -20.0 0.0 

Fig. 5. Upper curves: standing-wave field ID(~l)[2/[Do[ 2 at the 
surface. Solid curve: Ad'/d'= 0.0; dashed curve: Ad'/d'= 0.5. 
Lower solid curve: rocking curve. 

INTEGRATED 

FIELD 

/ '  

t /  ~ - - - 

Fig. 6. Integrated standing-wave field (arbitrary units); solid 
curve: Ad'/d' -- 0.0; dashed curve: Ad ' /d '  = 0.5. The integration 
has been performed over a depth equal to half an extinction 
distance, that is, in this case, to about twice the thickness of  the 
epilayer. 

corresponds to the yield from the crystal itself. The 
oscillations are damped out. The signal around the 
substrate peak is very close to that which would be 
emitted by the perfect crystal and gives no informa- 
tion about the epilayer, but that around the epilayer 
peak is characteristic of the heterostructure and 
enables the determination of atomic positions in the 
epilayer. 

Fig. 7 represents in the same pseudo-three- 
dimensional way as Fig. 4 the variations of the stand- 
ing-wave field with depth. As for the rocking curve, 

I 

illi I i 

19 

d z  

Fig. 7. Pseudo-three-dimensional representation of  the standing- 
wave field nD(r/, z)l 2 at various depths between the surface and 
the bulk. Ad'/d'=O.O. 

~p/Zw 

0.0 

-4 .0  

-8 .0  

-4(  

• ", ',i "/",: ",: ',: ';' ,:' ,: 

I i 
Elpilayier 

peak 

\SL I  =~trat 

i i 
I. 

).0 -20 .0  0.0 20.0 

Fig. 8. Variations with the deviation parameter of  the phase, 
~(T/, 0), at the surface. Dashed curve: value modulo 2~r; solid 
curve: total value. 
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the fringe spacing decreases as depth increases, fol- 
lowing the decrease of the distance between the epi- 
layer and substrate signals until it is equal to zero at 
the interface. 

4.2.3. Phase. Fig. 8 represents the variations with 
angle of incidence of the phase ~0 of the ratio ~: of 
the complex amplitudes of  the two waves in the wave 
field, Dh/Do, calculated at the surface of the crystal 
and given in units of 2zr. Two representations of the 
same curve are plotted in this figure. The dashed curve 
corresponds to the variations of the phase modulo 
27r. The periodic jumps show that between the sub- 
strate and the epilayer peaks the phase varies by an 
amount somewhat larger than 2zr and the full curve 
represents these total variations which correspond to 
the adaptation of the wave fields to the change in 
lattice parameter between substrate and epilayer. It 
has been checked that the period of the standing-wave 
fringes, and therefore that of the rocking curve, corre- 
sponds exactly to the range in r /over  which the phase 
varies by 2zr. 

Fig. 9 gives the three-dimensional view of the total 
variations of the phase with depth. The top and bot- 
tom curves of this diagram are plotted in Fig. 10. 
They represent the variations of the phase in the bulk 
below the interface and at the surface. These figures 
show that: 

(a) The variations of  the phase with angle of 
incidence in the bulk are identical to what they are 
in the perfect thick crystal case, as they should be. 

(b) The phase at the surface at the centre of the 
epilayer peak, qJ(r/e, 0), is equal to 17"/2 and to the 
phase in the bulk at the centre of the substrate peak, 
~(m, ~). 

Bul 

Z~,  =~ 

Interfac(~ \ 
Surface 

1~ e L.  

ANGLE OF INCIDENCE 

Fig. 9. Pseudo-three-dimensional representation of the phase 
~O(tl, z) at various depths between the surface and the bulk. The 
epilayer peak around rl~ and the substrate peak around r/$ can 
be observed. 

(c) The phase is strongly depth dependent in the 
angular range from the epilayer peak up to a critical 
value, r/c, lying further than the substrate peak. 

(d) In particular, it is found that the difference in 
phase at the substrate Bragg peak, rls, between the 
surface and the bulk, which is equal to the phase 
difference at the surface between the epilayer and 
substrate Bragg positions, 

A0(r/)  = ffs(r/s) -- ~h(r/s, 0) = 0(r/e, 0) -- 0(r/ , ,  0 ) (4.1) 

is equal to 7-2 x 2zr, that is to the value of  -27rhu(0) 
calculated in § 4.1. This result combined with (3.7) 
shows that the average slope A 0 / A t / o f  the variations 
of the phase on the full curve of Fig. 8 ( a t / =  r/e - rl,) 
is equal to -27rZt and that the average period of the 
fringes of the dashed curve on the same curve is equal 
to 1/Zt, that is to the period of the fringes for a 

0.0 

-4.0_ 

-8.0_ 

i i 

i 
i 
i 
i 

i 
i 
i 
i 
i 
i 
i 
i 
i 
i ! i 
I I ! )  

Fig. 10. Dashed curve: qJ(rl, oo), phase in the bulk; solid curve: 
qJ (-q, 0), phase at the surface. The Bragg positions for the epilayer 
and substrate peaks are indicated by broken vertical lines. 

tZm 

0.0 

-2.0 . 

-4.0- 

-6.0 
Z 

0.0 210 mtcrons 

/ 
/ 

Z. 
I I 

1.0 

Fig. 11. qJ(r/$, z), depth dependence of the phase at the Bragg 
position for the substrate. The curve obtained for hu(z) is iden- 
tical. 
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perfect thin crystal of the same thickness, Zt, as the 
epilayer. 

Furthermore, it can be shown that the variations 
(3.6) of hu(z) can be rigorously superimposed on 
those of O(r/~, z) given in Fig. 11. This means that 
condition (2.14) is satisfied for the substrate Bragg 
position and this very important result will be inter- 
preted in the next section. 

(e) At the middle of the epilayer Bragg peak, the 
phase difference between the bulk and the surface is 
equal to ~'/2. 

(f) There is no value of the deviation parameter 
for which the phase is rigorously independent of the 
depth. However, the variations are very small for 
values smaller than the epilayer Bragg peak and for 
values larger than the critical value 7~. 

4.2.4. Discussion; position of the nodes. In the 
deformed crystal considered in this paper, there is no 
curvature of the reflecting planes. Only their lattice 
spacing is changed and their positions are displaced 
with respect to these which they would occupy in the 
perfect substrate. As described in § 3, the epilayer has 
a lattice parameter larger than that of the bulk and 
the displacement of the deformed planes with respect 
to the perfect ones increases as one considers planes 
further away from the bulk and closer to the surface. 
As has been said in § 2, the relative position of the 
nodes of standing waves with respect to the deformed 
and undeformed lattice planes is determined by the 
value of the phase. If the phase is not depth depen- 
dent, the nodes are hooked to the deformed planes; 
if condition (2.14) is satisfied, they are hooked to the 
substrate. In all other cases, they drift with respect 
to these positions. More accurately, the depth depen- 
dence of the phase at a given value of the deviation 
parameter 7 shows that the depth dependence of the 
node spacing is different from that of the deformed 
lattice planes. Quantitatively, and with the variation 
of ~b(7, 0) approximated by a straight line of slope 
-2~'Zt between 7~ and ~ ,  the phase difference at a 
given 7/ between the bulk and the surface gives by 
analogy with (3.7) the relative difference Ad,/dn 
between the node spacing and the reflecting plane 
spacing at the surface as 

Adn/dn=(d/2-a-zt)[~t(rl, ~ ) - ~ ( 7 , 0 ) ] .  (4.2) 

The analysis of § 4.2.3 can therefore immediately 
be translated in terms of node positions. The fact that 
condition (2.14) is satisfied for one angle of incidence 
only shows that it is only for the middle of the 
substrate Bragg peak, ~ ,  that the nodes remain 
hooked to the undeformed lattice planes in the bulk. 
It is easy to check with (4.2) that Ad~/d,, is then 
indeed equal to AdJd~(O). For all other angles of 
incidence there is a drift of the nodes with respect to 
the substrate planes. 

When the crystal is rotated towards angles of 
incidence larger than the substrate Bragg angle in the 
range 75 < 7 < 7c, the nodes lag behind the substrate 
planes. In other words, as I ~b( 7, oo) - ~b( 7, 0)1 becomes 
larger than 2~-Ihu(0)l, the node spacing becomes 
decreasingly smaller than that of the substrate lattice 
planes. At 7 = 7c, for instance, (4.2) shows that the 
relative difference between the node spacing and the 
bulk lattice spacing is equal to -2 .5  x l0 -4. The stand- 
ing waves, however, remain coupled to them in a 
certain way. As the angle of incidence increases fur- 
ther away from the substrate peak, the amplitude of 
the field becomes very small and, at the critical value, 
7c, of the deviation parameter, the coupling of the 
standing waves with the substrate becomes so weak 
that they completely unhook; the node spacing in the 
epilayer suddenly starts increasing very fast until it 
nearly catches up with that of the deformed planes 
around which it oscillates. 

When the crystal is rotated from the substrate Bragg 
peak towards the epilayer Bragg peak (Te < ~ < r/~), 
the node spacing becomes larger than that of the 
substrate and the nodes drift from the substrate lattice 
positions towards the epilayer ones, but not enough 
to catch up with them. 

At the Bragg position for the epilayer, the nodes 
move nearly in phase with the deformed planes, but 
with a drift of ~'/2 between the bottom and the top 
of the epilayer. For angles of incidence smaller than 
the epilayer Bragg angle, the nodes oscillate around 
the deformed planes. They are therefore never exactly 
hooked to the deformed planes. 

4.2.5. Influence of interface steepness. The influence 
of interface steepness characterized by C is shown 
in Figs. 12 to 14. Values of C ranging from 0.005 to 
0-5 ~m have been considered. The former corre- 
sponds to about ten lattice planes (the lattice param- 
eter of GaAs has been taken to be equal to 5.6532 ,~) 
and to a relatively steep interface (steeper interfaces 
will be discussed in § 5), the upper part of the epilayer 
being practically perfect. In the latter case, C corre- 
sponds to about 1000 lattice planes, which is a rela- 
tively large fraction of the epilayer thickness; the 
lattice spacing in the epilayer is always far from being 
constant and this case simulates the behaviour of 
standing waves in a continuously deformed crystal. 

Three main effects may be observed on the figures: 
(a) The amplitudes of the fringes of the phase (Fig. 

12), the field (Figs. 13a and b) and the integrated 
field (Fig. 14) are much larger outside the range 
7e < 7 < 7.~ for the steeper interfaces and inside this 
range for the broader interfaces. 

(b) The angular position of the integrated signal 
from the epilayer depends strongly on the shape of 
the interface, in particular for broad interfaces. It is 
much less so for steep interfaces. By contrast, the 
position of the signal from the substrate peak 
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Fig. 12. Influence of interface steepness on the phase O(n, 0). The 
values of C are given in micrometres. 
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(b) 

Fig. 13. Influence of interface steepness on the standing-wave field 
ID(n,0)l 2 at the surface for h . r = 0 . 0 .  (a) C=0 .005  ~m; (b) 
C = 0 - 5  ~m. 

practically does not depend on the shape of the 
interface. 

(c) the critical value, rlc, of the deviation parameter 
for which the standing waves uncouple from the 
substrate and the corresponding value of  the phase 
are very strongly dependent on interface steepness 
(Fig. 12). The values of the phase at rl = 1% and rl = r/s 
are however the same for all the curves since they do 
not depend on C and it is possible to use (4.2) to 
evaluate the node spacing at r /=  r/c for the different 
values of C. For instance, the relative difference 
between the node spacing at the surface and the 
perfect reflecting plane spacing in the bulk is of the 
order of - 0 . 2  x 10 -4, --2"5 X 10 -4 and - 4 . 8  x 10 -4 for 
C = 0.25, 0.05 and 0.01 Ixm respectively. 

5. Deformed surface layer 

5.1. Experimental conditions 

In this section we consider the same diffraction 
conditions as in § 4 and the same strain distribution 
(3.1). But in order to simulate a surface relaxation, 
the following parameters of the deformation have 
been chosen: 

Aa/a = + 2 % ,  which corresponds to A t / = - 7 0 9 - 5 ;  

zt = 1.000 Ixm 

C = 1.4133 ~ = a/4 (c = 0.00014133). 

I N T E G R A T E D  

F I E L D  

! 

't /i, 

i!i 
T i t  

,Q, I "  
_---:-~. ~ ~  

- 4 0 . 0  - 2 0 . 0  0 . 0  2 0 . 0  

C = 0 . 0 1  . . . . . . .  

C = 0 . 0 5  

C = 0 . 2 5  . . . . . . . . . . .  

Fig. 14. Influence of interface steepness on the integrated stand- 
ing-wave field for h .  r = 0.0. The integration depth is equal to 
half an extinction distance. Values of C are given in micrometres. 
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Table 1. Variations of  lattice parameter and of  hu(z) 
with depth 

z - z, zaa/a (%) hu(z) 
a 0.04 0.000 

a/2 0.24 0"000 
0 1.00 -0.014 

-a/2 1.76 -0.043 
- a  1"96 -0.080 

- 2 a  2.00 -0.160 
- 3 a  2.00 -0.240 
- 4 a  2.00 -0.320 
- 5 a  2.00 -0.400 
- 6 a  2.00 -0.480 
- 7 a  2.00 -0.560 
- 8 a  2.00 -0.640 
- 9 a  2.00 -0.720 

- 10a 2.00 -0.800 

Table 1 gives the corresponding values of  the lat- 
t ice-parameter  varitions and of hu(z) at various 
depths close to z = z~. It can be seen that the lattice- 
parameter  relaxation is equal to 1.92% over two unit 
cells. A surface relaxation over a few unit cells has 
thus been simulated.  

As has been said in § 2, the crystal surface can be 
put at any level defined by a given value of z. The 
value of Zl is only one of  the parameters used in (3.1) 
to define the strain distribution. In § 4, the crystal 
surface was put at z = 0 for convenience. Here the 
properties of  the s tanding waves will be studied 
assuming the crystal surface to be put at any of the 
levels defined by the values of z given in Table 1. It 
must be stressed that the model  does not pretend to 
be elastically the most stable description of  the sur- 
face. It is s imply used as an analytical  representat ion 
of a surface relaxation in order to find out whether  
the nodes remain  hooked to the substrate or not. The 
general result is expected to hold also for any other 
elastic model.  

5.2. Results 

Fig. 15 shows the variations with angle of  incidence 
of  the s tanding-wave field along the lattice planes at 

,! , i ' i  

I 

Fig.  15. S t a n d i n g - w a v e  f ie ld at  t en  succes s ive  a t o m i c  l aye r s  a b o v e  
the  m i d d l e  o f  the  in t e r f ace .  T h e  s u r f a c e  r e l a x a t i o n  is e q u a l  to 
2% a n d  t a k e s  p l a c e  o v e r  o n e  un i t  cell  on  each  s ide  o f  z = z~. 

z = zt and at each of  the ten successive layers above 
it. They were calculated putting A d ' / d ' =  0 in (2.10). 
If, on the other hand,  one assumes condit ion (2.14) 
to be satisfied, that is that the nodes remain hooked 
to the substrate, it is possible to calculate the field by 
means  of  (2.12) where Ads/d,(z)  is put equal  to each 
of  the successive values (2.11) of  hu(z) given in Table 
1. It is found that for the first few levels above z~ the 
resulting curves super impose quite well with those of 
Fig. 15 but that they start deviating around the seventh 
plane. The first one which deviates significantly is the 
one at z = z l -  10a. The two corresponding curves, 
calculated by means  of  (2.10) and (2.12), respectively, 
are plotted in Fig. 16. The error in the atomic position 
made when assuming the nodes to be hooked to 
the substrate is of  the order of  0-01 lattice spacing. 
This error cannot  be determined accurately as the 
shape of  the curve calculated using Takag i -Taup in  
equations cannot  be matched exactly using perfect- 
crystal theory. Only a best fit can be found. 

The same study has been repeated for different 
values of  the parameters  of  the strain distr ibution and 
the conclusion is roughly the same in all cases. When 
there is a coherent  thin overlayer on a perfect bulk, 
the parameter  misfit being a few percent and the 
interface one or two unit cells thick, the posit ion of 
the planes of the overlayer can only be deduced with 
accuracy from standing-wave results with the hooked- 
nodes approximat ion  for at most the first ten or so 
layers. 

6. C o n c l u d i n g  r e m a r k s  

The main  results of  the computer  s imulat ion 
described in this paper  are summarized  below. 

FIELD 

2.0 

1.0 

0.0 

-10.0  

J 

I 

0 . 0  ~.o ~ 

Fig.  16. S o l i d  curve :  s t a n d i n g - w a v e  f ield at  z = z I - 10a, f r o m  Fig.  
15, c a l c u l a t e d  b y  so lv ing  T a k a g i - T a u p i n  e q u a t i o n s .  D a s h e d  
curve :  s t a n d i n g - w a v e  f ie ld c a l c u l a t e d  a s s u m i n g  n o d e s  to  be  
h o o k e d  to the  s u b s t r a t e  a n d  at  a p o s i t i o n  in the  un i t  cel l  co r re -  
s p o n d i n g  to  the  a t o m i c  d i s p l a c e m e n t  hu(z) at z = zl - 10a. 
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When a crystal surface is deformed,  the s tanding 
waves can only be assumed to be hooked to the perfect  
bulk lattice planes for the first ten or so atomic layers 
at any angle of  incidence,  but  are hooked  th roughout  
the whole thickness at the exact Bragg angle for the 
substrate. In all other  cases the node spacing depth 
distribution is different f rom either that of  the bulk 
or that of  the deformed crystal. Great  caut ion should 
therefore be taken in interpreting s tanding-wave 
results of  crystals with a deformed surface layer or 
an overlayer  with a slightly different lattice parameter .  

If, however ,  an appropr ia te  elastic model  describ- 
ing the strain distr ibution in the deformed crystal is 
known,  the exact  posit ion of  the nodes can be 
deduced from the phase distribution tp(r/, z) and the 
s tanding-wave field calculated.  By compar ing  the 
results with exper imental  measurements  it is then 
possible to determine a tom location at the surface or 
inside the de formed  layer, as in the perfect-crystal  
case. The amoun t  of  strain in the epilayer of  a hetero- 
structure can be de te rmined  as has been shown by 

Kova l ' chuk  et al. (1987) and the steepness of  the 
interface est imated.  

This work was part ly suppor ted  by C N R S - A T P  
project 172 and by grant  CPBP 01.05 (Warsaw) .  
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Abstract 

Figures of merit based on PSIO and on strong triplets are 
often unreliable for structures with superstructure effects. 
Prior information on pseudotranslational symmetry is used 
in order to estimate one-phase seminvariants. These are 
used, together with quartet invariants, for finding the correct 
solution in a multisolution process. 

Symbols and abbreviations 

Papers by Cascarano, Giacovazzo & Lui6 (1988a, b) will 
be denoted respectively as papers III and IV. 
s.s.: structure seminvariant. 
s.i.: structure invariant. 
Other symbols as in paper III. 

Introduction 

Different probabilistic approaches are today available for 
estimating triplet invariants in crystal structures with super- 

0108-7673/89/060441-03503.00 

structure effects (Brhme, 1982, 1983; Fan Hai-fu, Yao Jia- 
xing, Main & Woolfson, 1983; Gramlich, 1984; Cascarano, 
Giacovazzo & Luir, 1985, 1987, 1988a, b). No attempt has 
so far been made for estimating (in a probabilistic sense) 
other types of s.i.'s or s.s.'s, even if their role in this kind 
of structure is expected to be non-negligible. 

Default runs of the SIR package (Cascarano, 
Giacovazzo, Burla, Nunzi, Polidori, Camalli, Spagna & 
Viterbo, 1985) involve, besides triplets, also quartet 
invariants and one- and two-phase seminvariants. However, 
only triplets are used for structures with superstructure 
effects according to papers III and IV. Even if they are 
successful in solving such structures, corresponding figures 
of merit (FOM's) for finding the correct solution are usually 
unsatisfactory (Cascarano, Giacovazzo & Viterbo, 1987). 
Two FOM's involving triplets (ALFCOMB and PSCOMB) 
are used in SIR, both based on the agreement between the 
theoretical and the experimental distributions of the a 
parameter for strong and PSI0 triplets respectively: the best 
agreement is characterized by unitary values of ALFCOMB 
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